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The stability of rotating-disc boundary-layer
flow over a compliant wall.
Part 2. Absolute instability
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A numerical study has been undertaken of the influence of a compliant boundary on
absolute instability. In a certain parameter range absolute instability occurs in the
boundary layer on a rotating disc, thereby instigating rapid transition to turbulence.
The conventional use of wall compliance as a laminar-flow control technique has
been to lower growth rates of convective instabilities. This has the effect of reducing
amplification of disturbances as they propagate downstream. For absolute instability,
however, only the suppression of its onset would be a significant gain. This paper
addresses the question of whether passive wall compliance can be advantageous when
absolute instability exists in a boundary layer.

A theoretical model of a single-layer viscoelastic compliant wall was used in
conjunction with the sixth-order system of differential equations which govern the
stability of the boundary-layer flow over a rotating disc. The absolute/convective
nature of the flow was ascertained by using a spatio-temporal analysis. Pinch-point
singularities of the dispersion relation and a point of zero group velocity identify
the presence of absolute instability. It was found that only a low level of wall
compliance was enough to delay the appearance of absolute instability to higher
Reynolds numbers. Beyond a critical level of wall compliance results suggest that
complete suppression of absolute instability is possible. This would then remove a
major route to transition in the rotating-disc boundary layer.

1. Introduction
Lingwood (1995, 1996) has recently shown that absolute instability may be an

important route to transition in the three-dimensional boundary layer over a rotating
disc. The absolute instability arises from the coalescence of a travelling Type I
cross-flow vortex and a hitherto obscure eigenmode (Type III), first identified by
Mack (1985), which appears to propagate inwards and to be damped. In both her
theoretical and experimental studies Lingwood triggered the disturbances impulsively.
Nonetheless the existence of absolute instability could explain why a survey of a large
number of previous experimental investigations of natural transition over rotating
discs reveals that the transitional Reynolds numbers are centred around a value
of about 513 with only a 3% scatter, as pointed out by M. Gaster (1992 private
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communication), cited in Lingwood (1995). This is in stark contrast with the laminar–
turbulent transition process in other flows, such as the Blasius boundary layer, where
solely convective instabilities are known to be involved.

In Part 1 (Cooper & Carpenter 1997) the effect of wall compliance on boundary-
layer instability over a rotating disc was studied. Amongst other things we showed
that wall compliance has a substantial stabilizing effect on the Type I cross-flow
instability. This result is encouraging from the viewpoint of using wall compliance for
laminar-flow control of three-dimensional boundary layers. But the promise implicit
in our findings would come to nought if the Lingwood absolute instability were not
also suppressed. Fortunately it is likely that if one of the coalescing eigenmodes is
suppressed the absolute instability will, in fact, at the very least be postponed to a
higher Reynolds number. This is in essence what is shown to happen in the present
paper which investigates theoretically the effects of wall compliance on the Lingwood
absolute instability.

In the interests of brevity we will not review the substantial literature on rotating-
disc boundary-layer instability for both rigid and compliant walls, but rather refer the
reader to Lingwood (1995, 1996) and Part 1. Similarly the details of the theoretical
treatment will also be omitted since it combines those of Lingwood (1995, 1997a) and
Part 1 which are followed closely.

Section 2 provides a brief outline of the problem. Results for rigid and compliant
boundaries are presented in §3 and conclusions from the investigation are drawn in
§4.

2. Formulation of the fluid problem
The disc is assumed to be infinite in diameter and rotating about its centre at a

constant angular velocity Ω. A cylindrical coordinate system in the rotating frame
is used with radius r∗, azimuthal angle θ and normal direction z∗ and the fluid is
assumed to occupy the region z∗ > 0. The mean flow field is obtained from the exact
similarity solution of the Navier–Stokes equations due to von Kármán (1921).

For the linear stability analysis a space–time-dependent perturbation field of in-
finitesimal disturbances is imposed on the mean flow field. The displacement thickness
δ∗ = (ν/Ω)1/2 (where ν is the kinematic viscosity of the fluid), r∗eΩ (where r∗e is an

arbitrary fixed radius) and ρr∗
2

e Ω
2 (where ρ is the fluid density) are used throughout

to non-dimensionalize length, velocity and pressure respectively. Thus r = r∗/δ∗ is the
variable non-dimensional radius and the Reynolds number

R = r∗e/δ
∗

is the non-dimensional fixed radius.
Following linearization of the Navier–Stokes equations, slow variation of the

Reynolds number with radius is ignored so that the quantity r is replaced with
R. Terms of order R−2 and higher-order terms are subsequently neglected. The per-
turbation quantities are then expressed in the normal-mode form, such that they are
proportional to

E = exp{i(αr + βRθ − ωt)}
where, in general, α is the complex radial wavenumber, β the wholly real azimuthal
wavenumber and ω is the complex frequency of the disturbance.

This process leads to the sixth-order system of equations, originally derived by
Malik, Wilkinson & Orszag (1981), which retain the effects of Coriolis acceleration
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and streamline curvature and which, for present purposes, define an eigenvalue
problem of the form

F(α; β, ω, R) = 0.

The stability equations are solved using the spectral method described in Part
1. One advantage of this particular numerical method, in the context of absolute
instability, is that group velocities can be calculated readily at relatively little extra
cost.

The compliant wall is assumed to be an infinitely deep homogeneous viscoelastic
layer and its dynamics are modelled by means of the Navier equations. As noted in
Part 1, the assumption of infinite depth is not unduly restrictive since the disturbances
only penetrate a finite depth of wall. This type of compliant-wall model was chosen
in support of an ongoing experimental study.

There is no clearly defined manner in which to express non-dimensional shear
and bulk moduli characterizing the viscoelastic material, since the obvious reference
pressure of ρr∗

2

e Ω
2 varies with radial location. Accordingly the theoretical problem is

approached from a practical viewpoint so that a layer of fixed material properties
is used and changes in wall compliance are effected by varying the rotational speed
of the disc. To retain some correspondence with an ongoing experimental research
project for which a soft silicone rubber is used as the compliant wall, fixed values of
shear modulus, Gs = 1000 N m−2 and Poisson ration of 0.49 are taken. The length
scale for the wall equations is taken to be the constant boundary-layer thickness
δ∗. Further details of the theoretical modelling of the compliant wall, including the
coupling between the wall and fluid dynamics, are given in Part 1.

3. Analysis of absolute instability
In order to establish whether a flow is absolutely or convectively unstable a spatio-

temporal analysis must be performed, where both frequency and wavenumber take
complex values. The original concept of absolute and convective instability arose in the
area of plasma physics (Briggs 1964; Bers 1975). Huerre & Monkewitz (1990) review
developments in hydrodynamic stability theory concerning absolute and convective
instabilities in spatially developing flows. The response of the flow to impulsive forcing
determines whether it is absolutely or convectively unstable.

Absolute instabilities can be identified numerically by following the paths of two
solution branches in the α-plane. When waves propagating in opposite directions
coalesce this corresponds to the crossing or intersection of the solution branches
and ‘pinching’ is said to occur. The exact point of coalescence in the α-plane is
termed a pinch point. This corresponds to a singularity in the governing dispersion
relation producing a branch-point singularity in the ω-plane. Variations in flow
parameters cause such pinch points to arise whereby a convectively unstable flow
becomes absolutely unstable. However, certain criteria must be satisfied in order for
branch-point singularities in the dispersion relation to identify correctly an absolute
instability. To satisfy causality two solution branches must originate in distinct halves
of the α-plane at large positive ωi and as ωi is reduced coalescence should occur before
ωi reaches zero. If ωi is reduced to zero before pinching occurs then the flow remains
convectively unstable. This method of identifying absolute instability is known as the
Briggs (1964) criterion.

Lingwood (1995) assessed the response of the flow to impulsive forcing and solved
the initial boundary-value problem posed by an impulsive line forcing, δ(r−rs)δ(t)eiβθ ,
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Figure 1. Spatial branches 1 and 3 in the α-plane, for the rigid disc, with β = 0.126 and R = 530.
(a) ωi = 0.01, (b) ωi = 0.004, (c) ωi = 0.000289.
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Figure 2. Spatial branches 1 and 3 in the (ωr, αr)-plane, for the rigid disc, with β = 0.126 and
R = 530. (a) ωi = 0.01, (b) ωi = 0.004, (c) ωi = 0.000289.

where δ(r − rs) and δ(t) are the Dirac delta functions at a non-dimensional radius
of rs and at t = 0 respectively. A finite range of β values were found to define the
absolutely unstable region of the flow, but the value of β = 0.126 has been chosen
arbitrarily to demonstrate the existence of absolute instability.

3.1. Results for the rigid wall

Calculations for the rigid disc were performed at R = 530 and results found to
agree well with those of Lingwood (1995). The data take the form of eigenvalues,
α = αr + iαi, calculated for different values of ωr so that travelling modes are assumed
in the analysis. Figure 1 shows the evolution of the two spatial branches as ωi is
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Figure 3. Variation of branch-1 group velocity: − · − , ωi = 0.01; - -, ωi = 0.04; —, ωi = 0.000289.
β = 0.126, R = 530.

decreased. At ωi = 0.01 the two branches are located in opposite halves of the α-
plane, with branch-1 modes residing in the upper half of the α-plane and branch-3
modes in the lower half†. As ωi is decreased the two branches begin to converge and
pinching occurs around ωi = 0.000289. Although the exact point of coalescence is
not shown, the change in structure of the two solution branches after coalescence is
clearly evident. Figure 2 plots ωr against αr . It is noted that both solution branches in
the α-plane correspond to disturbances with negative frequency, or those that travel
inwards. Pinching occurs in the region of ωr ≈ −0.031. In addition to the results of
Lingwood the group velocity, defined by the real part of ∂ω/∂α, of the branch-1 mode
has been calculated. Figure 3 demonstrates how the group velocity curves approach
the zero point as ωi is reduced. The exact point of pinching, or the onset of absolute
instability, is identified by a sharp cusp point in the group velocity curve, which is
zero at the value of αr corresponding to the pinch point. This cusp point is necessary
but not sufficient for absolute instability. After coalescence the group velocity curve
loops below the zero line and this characteristic is taken to be another indication
of the existence of absolute instability and is used in the compliant-wall problem to
assess the convective/absolute nature of the flow. It should be noted that the Briggs
criterion must be known to be satisfied before the group velocity can be used in this
way to identify the existence of absolute instability.

It has been shown that branches 1 and 3 originate in opposite halves of the α-plane.
Therefore, for absolute instability to be suppressed a delay in the appearance of pinch
points until ωi is zero is required.

3.2. Results for the compliant wall

Initially a small degree of wall compliance was considered by assuming a disc rotation
speed of Ω = 2.5 rad s−1. This is a very low rotation rate compared to experimental
investigations, but theoretically results for the rigid disc are unaffected by the value
of rotation rate. Given that transition occurs at R ≈ 513 then smaller rotation rates
simply imply that transition occurs at a larger disc radius. Experimental analyses
are constrained by physically reasonable disc dimensions so that high rotation rates
are required if the boundary-layer stability characteristics are to be accommodated
within the diameter of the disc. For the case of a compliant boundary, however,
rotation rate is an important factor because it directly affects the linear speed of

† Branch 1 corresponds to the Type I instability, branch 2 (not shown) to the Type II viscous
instability, and branch 3 to Type III – the third eigenmode originally discovered by Mack (1985).
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Figure 4. Branches 1 and 3 in the α-plane with β = 0.126, R = 530 and ωi = 0.000289: —, rigid
wall; - -, compliant wall at Ω = 2.5 rad s−1.
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Figure 5. Evolution of branch 1 with Reynolds number over compliant boundary with
Ω = 2.5 rad s−1. β = 0.126, ωi = 0. (a) Variation in the α-plane, (b) variation of group veloc-
ity with αr . − · −, R = 540; - -, R = 580; —, R = 607.8; · · ·, R = 625.

the disc at each radial location. The measure of wall compliance is related to the
non-dimensional wall-stiffness parameter and at a fixed dimensional shear modulus
this is inversely proportional to the square of the linear speed, r∗eΩ. Therefore as Ω or
r∗e (equivalently R) is increased the wall effectively becomes more compliant. Initially
a small departure from the rigid boundary is assumed by using a relatively small
value for Ω in order to assess the influence of wall compliance on the two solution
branches.

Figure 4 shows the effect of this level of wall compliance at R = 530 when
ωi = 0.000289. It is shown that the branch-1 mode is stabilized, as expected from
previous investigations, but particularly in the vicinity of the pinch point. The branch-
3 mode, however, is moved to more negative values of αi so that the two branches
diverge in comparison to the rigid-wall state. Thus the pinching process no longer
occurs indicating that the compliant boundary has prevented the appearance of
absolute instability at these values of R and ωi.

In order to assess the full effect of the compliant boundary on the absolute instability
ωi is fixed at zero and parameters varied until a pinch point is found to occur. These
parameter values then define, for the compliant boundary, the beginning of the region
of absolute instability. The Reynolds number was increased, with ωi = 0, until a
change in the character of the solution branches became evident and coalescence had
occurred. From figure 5(a) it can be seen that coalescence of the two modes is delayed
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Figure 6. Effect of rotation rate on branch-1 mode. (a) Ω = 2.5 rad s−1, (b) Ω = 5 rad s−1,
(c) Ω = 10 rad s−1. —, R = 625; - -, R = 850; − · −, R = 1150.

until R ≈ 607.8, when β = 0.126, so that only a small degree of wall compliance is
enough to alter the delicate balance between the two solution branches and delay the
onset of absolute instability. Pinching is then expected to occur at ωi > 0, indicating
temporal growth, for R > 607.8 when Ω = 2.5 rad s−1. The onset of the absolute
instability can also be seen by following the group velocity of the branch-1 mode as R
is increased. Figure 5(b) shows how the group velocity falls as R becomes larger and
becomes zero at R ≈ 607.8. The group velocity loops below zero at higher Reynolds
numbers indicating the establishment of absolute instability.

The effect of a greater degree of wall compliance on the instability characteristics
was analysed by considering higher rotation rates. The effect of Ω = 5 and 10 rad s−1

on the solution branches at R = 625, 850 and 1150 has been calculated. Lingwood
(1995) stated that pinching occurs at larger values of ωi as R is increased. Evidence
for this can be seen in figure 6(a), where for Ω = 2.5 rad s−1 absolute instability
has already set in at these Reynolds numbers. The cusp point in the solution curve,
resulting from the pinching of the two branches, disappears as R becomes larger and
the curves become increasingly shallow. However, raising the level of wall compliance
by raising Ω to 5 and 10 rad s−1 produces a change in the behaviour of the solution
branches. Evidence of pinching is no longer present and, significantly, branch-1
solution curves begin to move upwards in the α-plane as R is increased, contrary to
the pattern observed in figure 5. The group velocities associated with these results
remain well above zero for all the cases examined at Ω = 5 and 10 rad s−1. On the
basis of these results this suggests that as Ω is increased further coalescence of the
branch-1 and -3 modes is unlikely to occur. The reason for this would appear to lie
in the fact that as R and Ω are increased the effective wall compliance is raised and
the stabilizing influence on the branch-1 mode becomes proportionately greater.

Absolute instability occurs across a finite range of β values for the rigid wall and
in order to show that the effect of wall compliance discussed above is consistent
across the whole β-range calculations have been carried out at R = 850 for two
levels of wall compliance over a wide range of β values. Figure 7(a) shows that
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Figure 7. Branch-1 solutions at R = 850 across the β-range for compliant wall.
(a) Ω = 2.5 rad s−1; (b) Ω = 5 rad s−1.

at Ω = 2.5 rad s−1, absolute instability still occurs across the a range of β values
(0.078 < β < 0.171). However, when Ω = 5 rad s−1, figure 7(b) shows clearly that the
branch-1 solutions retain their shape prior to coalescence which indicates the absence
of absolute instability across the whole β-range. A critical level of wall compliance
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for the azimuthal mode β = 0.126 has been determined and it is found that Ω > 4.236
rad s−1 is sufficient to suppress the onset of absolute instability.

All the above calculations have assumed that there is no damping in the wall, so
that the compliant material is purely elastic. The inclusion of wall damping, however,
was found to produce no significant changes to the results presented.

4. Conclusions
This study centred on the possibility of using wall compliance as a means of

preventing absolute instability in the boundary layer on a rotating disc. Compliant
boundaries have been used in numerous studies to reduce growth rates of convective
instabilities, such as the Tollmien–Schlichting instability in the flat-plate boundary
layer, with great success. In these cases wall compliance can bring about a delay in
the transition process by reducing the amplification of disturbances as they propagate
downstream. Absolute instability arises in the rotating-disc boundary layer as a
result of the coalescence of two solutions branches of the dispersion relation. Simply
reducing the growth rate of an absolute instability produces no gain in delaying
transition because the breakdown process is rapid from the onset of the instability.

The full sixth-order system of governing stability equations, which include Coriolis
and streamline curvature effects as well as viscous terms, was used to describe the
linear stability of the fluid. This set of equations was coupled to those describing the
dynamics of a single viscoelastic material layer. The results of the investigation have
shown that only a low level of wall compliance suffices, theoretically, to delay the
appearance of the absolute instability to higher Reynolds numbers. The process of
coalescence can be suppressed leaving the flow convectively unstable. For the relatively
low rotation rate of Ω = 2.5 rad s−1 (small degree of wall compliance) the Reynolds
number at which absolute instability first occurs is found to rise to R > 607.8 when
β = 0.126. There is likely to be some β dependence but this compares to the critical
value for the rigid wall of R > 507.3 (Lingwood 1997b). A significant factor in this
process is the stabilizing influence that wall compliance exerts on the branch-1 mode
and the opposing effect it appears to have on the branch-3 solution. This causes the
two solution curves to diverge in the α-plane and delays the intersection of the two
branches.

As the level of wall compliance rises the results suggest that the occurrence of
absolute instability could be eliminated completely. In order to suppress the onset of
absolute instability across the entire β range at R = 850, for example, a rotation rate
of only 5 rad s−1 is required, which still represents a modest level of wall compliance.
As Ω is increased further the stabilizing influence of wall compliance on the branch-1
mode becomes more pronounced and the likelihood of coalescence or pinching would
appear to be eradicated.

From a practical view point it is important to be aware that another type of
instability can occur for flows over compliant walls. This was first analysed by
Brazier-Smith & Scott (1984) for the special case of the unsupported flexible plate.
Subsequently Carpenter & Garrad (1986), Lucey & Carpenter (1992) and Yeo, Khoo
& Zhao (1996) have investigated absolute instability in two-dimensional flows over
compliant walls. This type of instability is usually termed divergence and occurs
when the wall becomes sufficiently compliant. It has been observed in experiments on
rotating compliant discs by Hansen & Hunston (1974, 1976, 1983) and Hansen et al.
(1980).

In conclusion, it is suggested that there exists an optimum level of wall compliance
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which is sufficiently high to suppress the absolute instability formed by the coales-
cence of Type I and III eigenmodes, but sufficiently low to avoid the occurrence of
divergence. The route to transition through absolute instability could therefore be
removed with the use of a compliant boundary. Our work also suggests that an ex-
perimental study of the effects of wall compliance on the boundary-layer instabilities
over a rotating disc could provide further corroboration of Lingwood’s theory.

This work was supported by the EPSRC and MTD Ltd. through the award of
research grants.
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